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appropriate formal solution of (2) is [3}

eO(SO’q)
MP(§0.9)

where C,y(£, ¢) is modified Mathieu functions of the first kind,
¢.0(7,q) is a periodic Mathieu function of the first kind, and
M@(&,q) is a second solution of a Mathieu equation. The
function M3 (£, ¢) corresponds to the Hankel function H{?(z),
where the H{?(z) is used to represent outgoing waves in prob-
lems pertaining to a circular cylinder. From Maxwell’s curl
equation we have
b — 1 ( 8e Je: s de,
T epo(pt—w?)1 "o

where [ = h /2 (cosh(2£)—cos(27))!/2. The magnetic field 4, at
the surface of the elliptic cylinder is equal to the surface currents
Js- Then, for the total current j, we have

j=¢jsld7=2foﬂh7(q-)ld'r. (6)

From (6) we have a relation between j and the coefficient 4 of
(4). The radiation resistance R, is defined by the ratio the
radiative power to the square of the current flowing into the
metal cylinder. The radiative power flow is given by

c=A| Co(€.9)— MP (¢, q9) | eo(r.q) (4)

(5)

r~—
P = real (— e5h%Y) (7)
where, 43¢ is the complex conjugate of the A5, and
. e0(£0,49)
e = — A0 Dy gy (r,q) (8)

) M3 (40, 9)
and ’}E‘Jcan be derived from (5) by making use of (8). Thus, the
radiation resistance is defined by

f il d'T

m T
|

|J

(9)
From (7), (8), and (9), we have
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(10)

where

(11)

in the £

I= 2](; le.o (7, q))* dr.

It is to be noted that there is no £ dependence of R,
direction.

In Fig. 2, the radiation resistance R,, is plotted as a function of
frequency. In Fig. 2, discontinuities of the curves near the
frequency of 2.5 GHz are originated from the use of the ap-
proximate formulas for Mathieu functions. For small values of ¢,
we expect the line of the curves in the low frequency regions to be
more accurate, while the curves in the high frequency regions
should be more reliable for large values of ¢. Interesting char-
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Fig. 2. Radial resistance is plotted as a function of frequency for various
dimensions of the thin wire. Other parameters are biasing dc magnetic field
H =500 oe, saturation magnetization 47M; = 1800 G.

acteristics are shown in Fig. 2 that this transducer near the
critical frequency w = y(BH)!/2. The following trends can be
found for the range of parameters considered in this paper: 1) the
exciting bandwidth of low frequency side decreases approxi-
mately proportional to x,; 2) the maximum value of R, de-
creases with increasing x,; and 3) a number of zeros of the R,
appear as x,, increases.

In order to confirm this theory, a curve is plotted in Fig. 2 by a
chain line so that this curve shows the resistance of a thin wire
with a shape which is almost considered as a circular cylinder
(xo=11m/m, y,=1.0 m/m). This curve agrees quite well with
the previous results which were obtained by using Bessel func-
tions. [1]

III. ConcrLusiON

In conclusion, a broad bandwidth (1 ~2 GHz) radial-wave
transducer can be expected to design by making use of a fine wire
with elliptical cross section. In view of the above, developments
of a suitable radial line should produce extremely wide band-
width and a magnetically tunable low frequency (0.5 ~ 1.0 GHz)
microwave transducer.
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New

A Simple Formula for the Capacitance of a Disc on
Dielectric on a Plane

HAROLD A. WHEELER, FELLOW, IEEE
Abstract —There is presented a simple explicit formula for the capaci-

tance of a thin circular disc on a dielectric substrate on a plane (so-called
“microstrip”). It gives continuous coverage of all shape ratios (»/4) and all
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dielectrics (k). The formula is developed by transition between asymptotic
formulas for small and large discs, and by interpolation between bounding
formulas for lo-% and hi-k. The presentation and development are facili-
tated by a reference formula which is the sum of the C of the disc radius
and that of the disc area (for any k). The relative error of C is less than
0.004 for all conditions.

Indexing terms —Capacitance, disc, dielectric, electric-field theory, mi-
crostrip, printed circuits, curve fitting, mathematical techniques.

1. INTRODUCTION

The capacitance of a thin circular disc to a parallel plane has
been difficult to evaluate. It is not susceptible to the simple
representation available for a two-dimensional model in terms of
conformal mapping. Classic formulas have been stated for the
extreme cases of a small disc or a large disc, relative to their
separation. An interposed dielectric sheet (as in printed-circuit or
“microstrip” technique) adds complication. During the past de-
cade, laborious programs of numerical analysis have evaluated
the intermediate shapes, even with the mixed dielectric.

There is presented here, a simple explicit formula for all shapes
with interposed dielectric. A byproduct is a formula for a disc
between parallel planes, with homogeneous dielectric. Each of
these formulas is essentially an interpolation between the ex-
tremes of shape and of dielectric. The free-space formulas are
within 0.003 of capacitance and the mixed-dielectric formulas are
within 0.004.

The background is represented by references in several cate-
gories:

[1112]
(31 6]

the classical formulas for a small or large disc with
free-space dielectric;
related two-dimensional models of a strip near a
plane, including mixed dielectric;
a strip between planes, for the edge effect around
a disc with hi-k dielectric;
numerical evaluation of intermediate shapes with
mixed dielectric;

[5] applications to a small antenna;
[10] recent closer formula for a large disc.

Beyond the classics, the recent papers by Chew [8], [10] and
Leong [9] have provided close support for the present formula-
tion of intermediate shapes with dielectric. The pattern of this
development is that of the author’s formula for a strip line (3], [6].
Fig. 1 shows the essential dimensions of a thin circular disc:

B1171
(4] [8] [9]

e Near one parallel plane, with any dielectric interposed; or
e Between two parallel planes, with homogeneous dielectric
(free space).

There will be evaluated in this order:

C, =capacitance to one plane with free-space dielectric
(k=1)
C, =-capacitance to two planes with homogeneous (free-
space) dielectric;
C, - = capacitance to one plane with interposed diclectric (k).
The second case is relevant in that it has the same field configura-
tion as the limiting case of hi-k dielectric in the third case.

A feature of this development is the use of a reference value of -

C that is a fair approximation for all cases (within 0.1 of C) and
asymptotically represents the extreme shapes. It is the sum of:

e The capacitance of a disc with large separation from the
plane (s); and
e The capacitance of the disc area with small separation.

The close evaluation is achieved by a supplement to this reference
value, needed most for intermediate shapes.
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Fig. 1. Circular disc near one or two planes.

II. SYMBOLS
Rationalized MKS units.

r = radius of thin circular disc.

h = height of disc from plane.

C = capacitance of disc.

oh = C of disc to plane (k =1).

Cy = C of disc to plane (any k).

&) = C of disc to two planes (k =1).

Ciys Cis» Gy, = reference C for each case.

C, = C of disc radius (far from any plane).
C, = C of disc area (to plane).

C(K) = C of large disc per Kirchhoff formula.

C(KCO) = C of large disc per Kirchhoff-Chew formula.
c() = C of medium-to-large disc per Chew’s table.
€ = glectricity (electric permittivity) of free space.
k = ¢ /¢, = dielectric constant.

k., = modified k for interpolation.

m = coefficient for potential at image location.
LB,UB = lower and upper bounds.

III. A REFERENCE FOR ALL CASES

A principal feature of this presentation is the choice of a
reference for critical comparison of various formulas. This refer-
ence is the sum of the formulas for the extremes of small and
large discs. :

Referring to Fig. 1, with a small disc over one plane, the radius
gives

7 8r. )
With a large disc, the area gives

C, =eknr’/h.
The sum of these two is taken as a reference

1+ k
2

This matches the asymptotic values at both extremes and is
within 0.10 of the correct value for all shapes and dielectric k.
Incidentally, it is a useful approximation for estimates.

Referring again to Fig. 1, the disc between planes is to be only
with homogeneous, anisotropic dielectric, so free-space dielectric
is taken as representative. The reference sum becomes

C,,=C.+2C,=¢€xr(8+2ar/h).

This has similar attributes.

The relevant reference will be used for graphical presentation
of cach case. It enables an expanded picture of small variations.

)

Cks=C,+Ca=€0r( 8+k77r/h)=C1sifk=l. 3)

4

IV. A Disc NEAR ONE PLANE

First, the disc is separated from a parallel plane by free-space
dielectric (¢, as in air). There are three cases:

e An asymptotic formula for a small disc (r < k);
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Fig. 2.

Image in one plane.

e An asymptotic formula for a large disc (r > h);
e Computations for intermediate size.

The extreme cases are susceptible to analytic formulation. The
intermediate case has been evaluated by various methods to give
some discrete values. The latter will be used to devise a transition
formula which is close for all shapes.

For a small disc, we start with its capacitance in free space, far
from the plane, as determined by the radius

C, =€ 8r.

(5)
For the effect of the plane, we take an image in the plane and
apply some simple rules.

Fig. 2 shows the disc and its free-space potential at the location
of its image in the plane. The disc is charged to a potential V),
giving contours of lesser potential V. One contour intersects the
image location at a radius r’. The average potential at the image
_ location is defined with weighting proportional to the charge
density, taken to be the same as on an isolated disc. This average
is found to be that of a contour including 2 /3 of the area of the
disc-image circle.

The use of a spheroidal contour and this average is a feature of
this derivation. The voltage ratio at the radius r’ is given by
Smythe [2]:

r/h

V/Vy= %atan

\/[2— %(r/h)z] +\/[2— %(r/h)2]2+4(r/h)2

(6)
in which m =1-(r'/r)?, so the weighted average requires m =

1/3.
It can be shown that the capacitance between disc and plane is
expressed by this formula with some value of m (0 < m <1):

Ci(m)=edr/(1-V/V,)
=608r/%
.atan %\/[j— —r—;—(r/h)2]+\/[2— %(r/h)2]2+4(r/h)2

(M
With m = 1/3, this will appear to give a very close approximation
for the range, 0 <r/h <2,
Fig. 3 shows various formulas plotted in terms of difference
from the described reference (3). It includes four graphs for a
small disc:

the isolated disc for extreme LB;
m =0 for closer LB;

m=1/3 for closest approximation;
m =1 for UB.
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Fig. 3. Disc near one plane (C})

For a large disc, we start with the classic formula of Kirchhoff
[1] for free-space dielectric:

C/(K)=C,[1+Q2h/ar)(In87r/h—1)]

=eor|[mr/h+2(In8xr/h —1)]. (8)

The two parts are the area and the first-order edge effect.
Recently Chew [10] has made a major contribution by adding
another term in the asymptotic formula of Kirchhoff. The result
is

C(KC)=C(K)+C,(h /mr)’(In*8mr —2)

)

This carries a comparable degree of approximation down to 1/3
the radius.
Fig. 3 includes three graphs for a large disc:

=C(K)+ soih(ln2877r—2).

e the disc area for extreme LB,
e (K) for Kirchhoff’s LB;
e (KC) for Chew’s closer LB.

For a disc of intermediate size, we have no simple formula that
is derived from basic principles. Recently Chew [8] has computed
a close approximation by a numerical method based on “dual
integral equation formalism”. While directed to a large disc, he
has provided a table of examples including intermediate size
(1< r/h<10). It happens that this table covers the transition
between the closest formulas for small disc and large disc, as
indicated in Fig. 3.

From this information, the following interpolation formula has
been devised to match the closest approximations in the three
regions (with k =1):

r 2 1-|—O.8(r/h)2+(0.31r/h)4
Ci=¢yr|m—+8+ = In 1 O.9(r/h)

; 3 . (10)

This is plotted as the main graph in Fig, 3. The first and second
parts are the reference value so the third part provides the
deviation therefrom. The relative deviation being small (—0.015
to +0.05), the third part is not critical. Its form is chosen to
retain several terms of the known asymptotic approximations at
both extremes. Then its coefficients are subjected to one adjust-
ment to match Chew’s table for intermediate shapes while retain-
ing the asymptotic approximations. The result is a remarkably
close approximation for the entire range. It is within 0.003 of the
known values.
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V. A Disc BETWEEN TwO PLANES

In the author’s previous treatment of a strip on a dielectric
sheet on a plane, the limiting case of hi-k dielectric was noted to
have the same field pattern as either side of a strip between two
planes [3], [6], [7]. The same rule is applicable to the subject disc.
Therefore, the disc between two planes, as shown in Fig. 1, is
here formulated. The approach is generally similar to that for one
plane. In Fig. 4, these formulas are plotted in terms of difference
from the relevant reference (4). Here the reference provides an
UB and the difference will appear to be small ( < 0.10).

For a small disc, in the limit, the two planes are no different
from one (5). For the effect of two planes, we take a series of
images of alternating sign. Each one is evaluated as in Fig. 2 and
(6). Then their sum determines the C of the disc between the two
planes, an extension of (7).

The result is plotted in Fig. 4, which will appear to provide a
close LB in the transition region.

A simple formula for UB can be derived from the sum for the
limiting case of a small disc

UBC, =C,/[1-(2/7)(r/h)n2].

This is plotted as an UB in Fig. 4.

For a large disc, the classic approximation is the addition of
(h/7)In4 to the radius to get the effective radius. The resulting
formula is

(11)

UBC, =2C,[1+(1/7)(n4)(h/r)]". (12)

This is plotted in Fig. 4 as an UB which also is close in the
transition region.

. At their closest approach, the relative separation of the closest
bounds is only 0.015 so a smooth transition could leave an error
much less than this separation.

The following formula has been devised to fit the asymptotic
behavior at both extremes and to provide a smooth transition:

Co=Cy,[1-1/(4+2.6r/h +2.9k /7)]. (13)

This is plotted as the main graph in Fig, 4. The second part is the
difference below the reference value (4). It is symmetrical about
r/h=1.06, the ratio mean between the asymptotic slopes. The
residual error of this formula is estimated to be a small fraction
of the minimum separation, say < 0.002.

VI. A Disc oN DIELECTRIC ON A PLANE

The choice of a reference value (3) gives a remarkable oppor-
tunity for presenting on one set of coordinates anything between
the extremes of lo-k and hi-k. Fig. 5 shows these extremes as
bounds of a rather small region that includes all values of r/h
and k. A simple rule for interpolation will give a formula for all
of this region.

In the earlier study of a strip line with similar dielectric 3], [6],
a rule for interpolation was based on the concept of series-paral-
lel C components contributed by the dielectric. The same concept
is applied here.

For the extreme of hi-k, the capacitance becomes

C=k(36)- (14)

This follows from the same shape of field pattern in the space
between the disc plane and the lower plane, as seen in Fig. 1.
An interpolation between the bounds in Fig. 5 can be ex-

pressed in terms of a derived k, which likewise varies between |
and oo (see (3), (16), (10), (3), (13), and (4))

Co/Crs=(1/k)C/Cis +(1=1/k,)C, /Cyy. (15)
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Fig. 5. Disc near one plane with dielectnic (Cp).

Chew’s recent table [8] gives a close computatidn for some
cases in this region which includes the most sensitive interpola-
tion

r/h=1,2,5,10; k=2.65,96.
Closest match to these tables is obtained by making

k,—1=0.63(k—1); k,=037+0.63k. (16)

The factor 0.63 is conceptually an interpolation between series
and parallel components of C in the dielectric.

Note that C,, is (3) with k=1.

Formula (15) with (16) becomes an explicit formula for all
cases on one plane. Its other ingredients are given by formulas (3)
4), (10), and (13). In Fig. 5 are graphed the bounds and two
intermediate values of k in the region of most sensitive interpola-
tion. A comparison with Chew’s tables (in the indicated region
which is most sensitive) and Leong’s tables (over a wider region)
gives agreement within 0.0034 of C. The residual error all over is
taken to be within this discrepancy.

VII. CONCLUSION

A number of features, old and new, have been integrated to
formulate the C of a disc over a plane with interposed dielectric.
The principal sources are tabulated here.

disc: small medium large
lo-k new (7) Chew [8) Chew [10] (9)
med-k Leong [9] Chew [8] Chew [8]
hi-k new (14) old (12)

The integration of these sources has been facilitated by the simple
general reference (3) described as a basis for presentation. The
result is a simple explicit formula (15) for continuous coverage of
the entire range of shape and dielectric.



2054

The initial impetus for this development came from a specific
interest in a small antenna in the form of a disc-loaded monopole
with no dielectric substrate [5]. From this, the author perceived
the opportunity for the more general formula reported herein.
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Frequency Dependent Characteristics of Microstrips
on Anisotropic Substrates

MASANORI KOBAYASHI, MEMBER, IEEE

Abstract —Frequency dependent characteristics are discussed for the
microstrip line on anisotropic substrate (original line) from the extension
of the results obtained in an isotropic substrate case. In approximating the
original line by the equivalent line on an isotropic substrate, it is best to
maintain 4 and w of the equivalent line equal to those of the original line.
The reason is that the inflection frequency f, is a function of w and 4 and
that f, plays an important role in calculating the dispersion. Three ap-
proximate dispersion formulas are derived owing to this idea. The results
obtained by these formulas are compared with the other available theoreti-
cal and experimental results for sapphire substrates. Good agreement is
seen.

I. INTRODUCTION

Many articles have appeared giving design data for a micro-
strip which is an essential part of the integrated circuit in modern
microwave devices. Sapphire has several advantages as a sub-
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strate material, so that its higher cost is offset [1]. Sapphire is a
uniaxial crystal; it is therefore anisotropic. Being anisotropic, the
microstrip lines possess characteristics which differs somewhat
from that of lines on isotropic substrates.

The characteristics of microstrip lines on anisotropic substrates
have been already investigated with a high degree of accuracy in
the quasistatic approximation (see [9]-[11]). On the other hand,
many available analyses for the case of isotropic substrate also
can be used for the case of anisotropic substrate by using the
transformation from anisotropic to isotropic problems [2], [4], [5],
[10]. ,

However, recent developments require the operation of a mi-
crostrip line at higher frequencies. Some authors have theoreti-
cally studied the frequency dependent characteristics for the case
of anisotropic substrates [4], [5] and have checked the validity of
the equivalent line of the isotropic substrate for such a case [4],
[5]. However, there was a large discrepancy between the effective
dielectric constants of the two corresponding lines at the higher
frequency. The experimental investigation and the empirical for-
mula have been compared to a sapphire substrate [3].

On the other hand, the computer-aided design of microstrip
circuits requires accurate and reliable information on the disper-
sive behavior. For the case of an isotropic substrate, a few
approximate formulas satisfying the CAD requirement have been
derived (see [6], [12]). The author has also formulated a new
approximate dispersion formula, and discussed the important
role of the inflection frequency f, on the dispersion curves, and
the influence of the structural parameters, e*(relative dielectric
constant), s(substrate thickness), and w/h(shape ratio) to the
dispersion curves [12].

In this short paper, the simple approximate dispersion for-
mulas are derived for a microstrip line on an anisotropic sub-
strate. As an example, the numerical results of a case of sapphire
substrate have been compared with the other available theoretical
results [4], [5] and experimental data [3].

II. APPROXIMATE DISPERSION FORMULA

Consider the microstrip line of width w on an anisotropic
substrate of thickness 2 whose permittivity tensor (in two-dimen-
sional space) is presented by

e 0
= 0 €9 (1)

*
€ﬂ

(11|

where €} denotes the relative dielectric constant in the direction
of the {-axis, € denotes the relative dielectric constant in the
direction of the 7-axis, and ¢, is the permittivity of free-space.
The structure is shown in Fig. 1. The £-7 coordinates are
identical to the principal axes of this substrate and can be
obtained by rotating the x—y coordinates with the angle y. In
designing such a line, the characteristic impedance Z and the
phase velocity v(wave length A, propagation constant 8) must be
obtained. Let us express the effective dielectric constant at a
frequency f by €l ;. These values above can be obtained as
follows [7], [8], [12]:

D
7= _7_7_(1_ (2)
0 %
P €etr, f
12 }\ ,B() 1
— === 3
% Ao B €5 s )
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