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appropriate formal solution of (2) is [3]

where Ceo(.$’, q) is modified Mathieu functions of the first kind,

c,o(~, q) is a periodic Mathieu function of the first kind, and

lfj~~(~,q) is a second solution of a Mathieu equation. The

function ikf~~)(~, q) corresponds to the Hankel function H~2) ( z),

where the H~2)(z) is used to represent outgoing waves in prob-

lems pertaining to a circular cylinder. From Maxwell’s curl

equation we have

h,=
1

(

8eZ de=

–Yrr+VZ )
(5)

LcJ/Lo(pZ-KZ)l

where l=h/fi(cosh(2&) -cos(2~))1i2. The magnetic field h, at

the surface of theelliptic cylinder is equaf to the surface currents

-i,. Then, for the totaf current~> we have

(6)

From(6) we have arelationbetweenj and the coefficient of

(4). The radiation resistance R~ is defined by the ratio the

radiative power to the square of the current flowing into the

metal cylinder. The radiative power flow is given by

P/c = reaf ( – ejc~) (7)
—

where, h ~ is the complex conjugate of the h~, and

s< =e=
C,0($O!9) ~$)(g, q)c.o T79

–AJI’WOA) () (8)

-
and h; can be derived from (5) by making use of (8). Thus, the

radiation resistance is defined by

From (7), (8), and (9), we have

R =_ (“~O(~2-’2))2
?7!

(2vrp)2

aceO(t0,9) _ Ceo(fo, q) C?l’f$)(fo,q) 2
a.g w%)(&)*9) dt

1 C=o(.g’o, q) 2
.— “W?(f>g)

l%OIJ J_ J&),($o ) q)

~Mi?(&,9) .1

a.g

where

I=2JTlceo(7, q)\%

(9)

(lo)

(11)

It is to be noted that there is no & dependence of RM in the ~

direction.

In Fig. 2, the radiation resistance Rn is plotted as a function of

frequency. In Fig. 2, discontinuities of the curves near the

frequency of 2.5 GHz are originated from the use of the ap-

proximate formulas for Mathieu functions. For small values of q,

we expect the line of the curves in the low frequency regions to be

more accurate, while the curves in the high frequency regions

should be more reliable for large values of q. Interesting char-
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Fig. 2. Radml resistance is plotted as a function of frequency for various
dimensions of the thin wire. Other parameters are biasing dc magnetic field
H = 500 oe, saturation magnetrzatlon 4m’vf, = 1800 G,

actenstics are shown in Fig. 2 that this transducer near the

critical frequency u = y ( BH) 1/2. The following trends can be

found for the range of parameters considered in this paper: 1) the

exciting bandwidth of low frequency side decreases approxi-

mately proportional to Xo; 2) the maximum value of R ~ de-

creases with increasing Xo; and 3) a number of zeros of the Rm

appear as X. increases.

In order to confirm this theory, a curve is plotted in Fig. 2 by a

chain line so that this curve shows the resistance of a thin wire

with a shape which is almost considered as a circular cylinder

(x. = 1.1 m/m, y.= 1.0 m/m). This curve agrees quite well with

the previous results which were obtained by using Bessel func-

tions. [1]

III. CONCLUSION

In conclusion, a broad bandwidth (1 -2 GHz) radial-wave

transducer can be expected to design by making use of a fine wire

with elliptical cross section. In view of the above, developments

of a suitable radiaf line should produce extremely wide band-

width and a magnetically tunable low frequency (0.5 -1.0 GHz)

microwave transducer.
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A Simple Formula for the Capacitance of a Disc on

Dielectric on a Plane

HAROLD A. WHEELER, FELLOW, IEEE

Abstract —There is presented a simple explicit formula for the capaci-

tance of a thin circular disc on a dielectric substrate on a plane (so-called

“ microstrip”). It gives continuous coverage of all shape ratios (r/h) and all
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dielectrics (k). The formula is developed by transition between asymptotic

fornndas for small and large discs, and by interpolation between bounding

formulas for 10- k and hi-k. The presentation and development are facili-

tated by a reference formula which is the sum of the C of the disc radius

and that of the disc area (for any k). The relative error of C is less than

0.004 for afl conditions.

Znukrirrg terms —Capacitance, disc, dielectric, electric-field theory, mi-

crostrip, priuted circuits, curve fitting, mathematical techniques.

I. INTRODUCTION

The capacitance of a thin circular disc to a parallel plane has

been difficult to evaluate. It is not susceptible to the simple

representation available for a two-dimensional model in terms of

conformal mapping. Classic formulas have been stated for the

extreme cases of a small disc or a large disc, relative to their

separation. An interposed dielectric sheet (as in printed-circuit or

“ microstrip” technique) adds complication. During the past de-

cade, laborious programs of numerical analysis have evaluated

the intermediate shapes, even with the mixed dielectric.

There is presented here, a simple explicit formula for all shapes

with interposed dielectric. A byproduct is a formula for a disc

between parallel planes, with homogeneous dielectric. Each of

these formulas is essentially an interpolation between the ex-

tremes of shape and of dielectric. The free-space formulas are

within 0.003 of capacitance and the mixed-dielectric formulas are

within 0.004.

The background is represented by references in several cate-

gories:

[1] [2]

[3] [6]

[3] [7]

[4] [8] [9]

[5]

[10]

the classical formulas for a small or large disc with

free-space dielectric;

related two-dimensional models of a strip near a

plane, including mixed dielectric;

a strip between planes, for the edge effect around

a disc with hi-k dielectric;

numerical evaluation of intermediate shapes with

mixed dielectric;

applications to a small antenn~

recent closer formula for a large disc.

Beyond the classics, the recent papers by Chew [8], [10] and

Leong [9] have provided close support for the present formula-

tion of intermediate shapes with dielectric. The pattern of this

development is that of the author’s formula for a strip line [3], [6].

Fig. 1 shows the essential dimensions of a thin circular disc:

● Near one parallel plane, with any dielectric interposed; or

. Between two parallel planes, with homogeneous dielectric

(free space).

There will be evaluated in this order:

c1 = capacitance to one plane with

(k=l);

C2 = capacitance to two planes with

space) dielectric;

free-space dielectric

homogeneous (free-

Ck = capacitance to one plane with interposed dielectric (k).

The second case is relevant in that it has the same field configura-

tion as the limiting case of hi-k dielectric in the third case.

A feature of this development is the use of a reference value of

C that is a fair approximation for all cases (within 0.1 of C) and

asymptotically represents the extreme shapes. It is the sum of:

● The capacitance of a disc with large separation from the

plane (s); and

● The capacitance of the disc area with small separation.

The close evaluation is achieved by a supplement to this reference

value, needed most for intermediate shapes.
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Fig. 1. Circular disc near one or two planes.

II. SYMBOLS

Rationalized MKS units.

r

h

c

c,

c~

c,

Cl, , ck,, cz.

c,

co

C(K)

C(KC)

c(c)

co

k

kC

m

LB, UB

= radius of thin circular disc

= height of disc from plane.

= capacitance of disc.

= C of disc to plane (k = 1).

= C of disc to plane (any k).

= C of disc to two planes (k = 1).

= reference C for each case.

= C of disc radius (far from any plane).

= C of disc area (to plane).

= C of large disc per Kirchhoff formula.

= C of large disc per Kirchhoff-Chew formula.

= C of medium-to-large disc per Chew’s table.

= electricity (electric permittivity) of free space.

= c/cO = dielectric constant.

= modified k for interpolation.

= coefficient for potential at image location.

= lower and upper bounds.

HI. A REFERENCE FOR ALL CASES

A principaf feature of this presentation is the choice of a

reference for critical comparison of various formulas. This refer-

ence is the sum of the formulas for the extremes of small and

large discs.

Referring to Fig. 1, with a small disc over one plane, the radius

gives
l+k

C,=cO~8r. (1)

With a large disc, the area gives

C.= cok~r2/h. (2)

The sum of these two is taken as a reference

Ck, = C,+- Co = cor
[

I+k

)
~8+knr/h =Cl, ifk=l. (3)

This matches the asymptotic values at both extremes and is

within 0.10 of the correct value for all shapes and dielectric k.

Incidentally, it is a useful approximation for estimates.

Referring again to Fig. 1, the disc between planes is to be only

with homogeneous, anisotropic dielectric, so free-space dielectric

is taken as representative. The reference sum becomes

C2~=C, +2 Co=eor(8+2~r/h). (4)

This has similar attributes.

The relevant reference will be used for graphical presentation

of each case. It enables au expanded picture of small variations.

IV. A DISC NEAR ONE PLANE

First, the disc is separated from a parallel plane by free-space

dielectric (c ~ as in air). There are three cases:

● An asymptotic formula for a small disc (r<< h);
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Fig. 2. Image in one plane.

. An asymptotic formula for a large disc (r >> h);

● Computations for intermediate size.

The extreme cases are susceptible to analytic formulation. The

intermediate case has been evaluated by various methods to give

some discrete values. The latter will be used to devise a transition

formula which is close for all shapes.

For a small disc, we start with its capacitrmce in free space, far

from the plane, as determined by the radius

C,=c08r. (5)

For the effect of the plane, we take an image in the plane and

apply some simple rules.

Fig. 2 shows the disc and its free-space potential at the location

of its image in the plane. The disc is charged to a potential VO,

giving contours of lesser potential V. One contour intersects the

image location at a radius r’. The average potential at the image

location is defined with weighting proportional to the charge

density, taken to be the same as on an isolated disc. This average

is found to be that of a contour including 2/3 of the area of the

disc-image circle.

The use of a spheroidal contour and this average is a feature of

this derivation. The voltage ratio at the radius ?’ is given by

Smythe [2]:

1.00 I // 1/3/
/

c,~=cr+ca

0.98 —

co
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1/16 1/4 rlh 4 16 64

Fig. 3. Disc near one plane (Cl)

For a large disc, we start with the classic formula of Kirchhoff

[1] for free-space dielectric:

C](K) =Cti[l+ (2h/nr)(ln8nr/h– 1)]

=cOr[nr/h +2(ln8nr/h –l)]. (8)

The two parts are the area and the first-order edge effect.

Recently Chew [10] has made a major contribution by adding

another term in the asymptotic formula of Kirchhoff. The result

is

Cl(KC) = C1(K)+Ca(h/mr)2 (ln28nr –2)

=C1(K)+ cO~h(ln28mr– 2). (9)

This carries a comparable degree of approximation down to 1/3

the radius.

Fig. 3 includes three graphs for a large disc:

V/V. = ~ atan
r/h

● the disc area for extreme LB;

/[
2–~(r/h)’]+ [2–~(r/h)2]2+4( r/h)2

● (K) for Kirchhoff’s LB;

(6)

in which m = 1– (r’/ r) 2, so the weighted average requires m =

1/3.

It can be shown that the capacitance between disc and plane is

expressed by this formula with some vafue of m (O < m < 1):

C,(m)= C08r/(1 -V/~)

(7)

With m = 1/3, this will appear to give a very close approximation

for the range, O < r/h <2.

Fig. 3 shows various formulas plotted in terms of difference

from the described reference (3). It includes four graphs for a

small disc:

● the isolated disc for extreme LB;
. m = O for closer -LB;

● m = 1/3 for closest approximation;

s m=lfor UB.

● (KC) for Chew’s closer LB.

For a disc of intermediate size, we have no simple formula that

is derived from basic principles. Recently Chew [8] has computed

a close approximation by a numericaf method based on “dual

integral equation formalism”. While directed to a large disc, he

has provided a table of examples including intermediate size

(1< r/h < 10). It happens that this table covers the transition

between the closest formulas for small disc and large disc, as

indicated in Fig. 3.

From this information, the following interpolation formula has

been devised to match the closest approximations in the three

regions (with k = 1):

(C1=cor ~~+8+~ln
1 +0.8( r/h)2+ (0.31 r/h)4

)
1+0.9(r/h) “

(lo)

This is plotted as the main graph in Fig. 3. The first and second

parts are the reference value so the third part provides the

deviation therefrom. The relative deviation being small (– 0.015

to + 0.05), the third part is not critical. Its form is chosen to

retain severaf terms of the known asymptotic approximations at

both extremes. Then its coefficients are subjected to one adjust-

ment to match Chew’s table for intermediate shapes while retain-

ing the asymptotic approximations. The result is a remarkably

close approximation for the entire range. It is within 0.003 of the

known values.
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V. A DISC BETWEEN Two PLANES

In the author’s previous treatment of a strip on a dielectric

sheet on a plane, the limiting case of hi-k dielectric was noted to

have the same field pattern as either side of a strip between two

planes [3], [6], [7]. The same rule is applicable to the subject disc.

Therefore, the disc between two planes, as shown in Fig. 1, is

here formulated. The approach is generally similar to that for one

plane. In Fig. 4, these formulas are plotted in terms of difference

from the relevant reference (4). Here the reference provides an

UB and the difference will appear to be small ( <0. 10).

For a small disc, in the limit, the two planes are no different

from one (5). For the effect of two planes, we take a series of

images of alternating sign. Each one is evaluated as in Fig. 2 and

(6). Then their sum determines the C of the disc between the two

planes, an extension of (7).

The result is plotted in Fig. 4, which will appear to provide a

close LB in the transition region.

A simple formula for UB can be derived from the sum for the

limiting case of a small disc

UBC, = C,/[l – (2/n )(r/h)ln2]. (11)

This is plotted as an UB in Fig. 4.

For a large disc, the classic approximation is the addition of

(h/n)ln4 to the radius to get the effective radius. The resulting

formula is

UBC, = 2C. [1+(1 /n)(ln4)(h/r)]2. (12)

This is plotted in Fig. 4 as an UB which also is close in the

transition region.

At their closest approach, the relative separation of the closest

bounds is only 0.015 so a smooth transition could leave an error

much less than this separation.

The following formula has been devised to fit the asymptotic

behavior at both extremes and to provide a smooth transition:

C,= C,$[l – l/(4+ 2.6r/h +2.9h/r)]. (13)

This is plotted as the main graph in Fig. 4. The second part is the

difference below the reference value (4). It is symmetrical about

r/h = 1.06, the ratio mean between the asymptotic slopes. The

residuaf error of this formula is estimated to be a small fraction

of the minimum separation, say <0.002.

VI. A DISC ON DIELECTIUC ON A PLANE

The choice of a reference value (3) gives a remarkable oppor-

tunity for presenting on one set of coordinates anything between

the extremes of 10-k and hi-k. Fig. 5 shows these extremes as

bounds of a rather small region that includes all values of r/h

and k. A simple rule for interpolation will give a formula for all

of this region.

In the earlier study of a strip line with similar dielectric [3], [6],

a rule for interpolation was based on the concept of series-paral-

lel C components contributed by the dielectric. The same concept

is applied here. ,

For the extreme of hi-k, the capacitance becomes

()C~=k ~C2 . (14)

This follows from the same shape of field pattern in the space

between the disc plane and the lower plane, as seen in Fig. 1.

An interpolation between the bounds in Fig. 5 can be ex-

pressed in terms of a derived kC which likewise varies between 1

and co (see (3), (16), (10), (3), (13), and (4))

C~/C~, = (l/kC)Cl/Cl, + (1 – l/kC)CJC2,. (15)

1.0
c2~ = c,+ Zca

C2

C2S

0.9 —

LB 2cd

I I I
1/16 1/4 rlh 4 I

Fig. 4. Disc between two planes ( C2).

I 1CHEW

‘1

~
1/16 1’

Fig. 5. Disc near one plane with dielectric (Ck).

Chew’s recent table [8] gives a close computation for some

cases in this region which includes the most sensitive interpola-

tion

r/h= l,2,5,10; k = 2.65,9.6.

Closest match to these tables is obtained by making

kC– 1 = 0.63( k–l); kC=0.37+0.63k. (16)

The factor 0.63 is conceptually an interpolation between series

and parallel components of C in the dielectric.

Note that Cl, is (3) with k =1.

Formula (15) with (16) becomes an explicit formula for all

cases on one plane. Its other ingredients are given by formulas (3)

(4), (10), and (13). In Fig. 5 are graphed the bounds and two

intermediate values of k in the region of most sensitive interpola-

tion. A comparison with Chew’s tables (in the indicated region

which is most sensitive) and Leong’s tables (over a wider region)

gives agreement within 0.0034 of C. The residuaf error all over is

taken to be within this discrepancy.

VII. CONCLUSION

A number of features, old and new, have been integrated to

formulate the C of a disc over a plane with interposed dielectric.

The principal sources are tabulated here.

disc: small medium large

lo-k new (7) Chew [8] Chew [10] (9)

reed-k Leong [9] Chew [8] Chew [8]

hi-k new (14) old ( 12)

The integration of these sources has been facilitated by the simple

generaf reference (3) described as a basis for presentation. The

result is a simple explicit formula (15) for continuous coverage of

the entire range of shape and dielectric.
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The initial impetus for this development came from a specific

interest in a small antenna in the form of a disc-loaded monopole

with no dielectric substrate [5]. From this, the author perceived

the opportunity for the more general formula reported herein.
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Frequency Dependent Characteristics of Microstrips

on Anisotropic Substrates

MASANORI KOBAYASHI, MEMBER, IEEE

Abstract — Frequency dependent characteristics are discussed for the

microstrip line on anisotropic substrate (original line) from the extension

of the results obtained in an isotropic substrate case. In approximating the

original line by the equivalent line on an isotropic substrate, it is best to

maintain h and w of the equivalent line equal to those of the original line.

The reason is that the inflection frequency ~ is a function of w and h and

that ~1 plays an important role in calculating the dispersion. Three ap-

proximate dispersion formulas are derived owing to this idea. The results

obtained by these formnlas are compared with the other available theoreti-

cal and experimental results for sapphire substrates. Good agreement is

seen.

I. INTRODUCTION

Many articles have appeared giving design data for a micro-

strip which is an essentiaf part of the integrated circuit in modern

microwave devices. Sapphire has several advantages as a sub-

Mauuscript received Aprd 30, 1982; revised July 2, 1982.
The author is with the Department of Electrical Engineering, Ibamki Univer-

sity, 4-12-1 Nakanarusawa Machr, Hrtachi, Japau.

strate material, so that its higher cost is offset [1]. Sapphire is a

uniaxial crystal; it is therefore anisotropic. Being anisotropic, the

microstrip lines possess characteristics which differs somewhat

from that of lines on isotropic substrates.

The characteristics of microstnp lines on anisotropic substrates

have been already investigated with a high degree of accuracy in

the quasistatic approximation (see [9]–[ 1l]). On the other hand,

many available analyses for the case of isotropic substrate also

can be used for the case of anisotropic substrate by using the

transformation from anisotropic to isotropic problems [2], [4], [5],

[10].

However, recent developments require the operation of a mi-

crostrip line at higher frequencies. Some authors have theoreti-

cally studied the frequency dependent characteristics for the case

of anisotropic substrates [4], [5] and have checked the validity of

the equivalent line of the isotropic substrate for such a case [4],

[5]. However, there was a large discrepancy between the effective

dielectric constants of the two corresponding lines at the higher

frequency. The experimental investigation and the empirical for-

mula have been compared to a sapphire substrate [3].

On the other hand, the computer-aided design of microstrip

circuits requires accurate and reliable information on the disper-

sive behavior. For the case of an isotropic substrate, a few

approximate formulas satisfying the CAD requirement have been

derived (see [6], [12]). The author has also formulated a new

approximate dispersion formula, and discussed the important

role of the inflection frequency ~, on the dispersion curves, and

the influence of the structural parameters, c*(relative dielectric

constant), h (substrate thickness), and w/h (shape ratio) to the

dispersion curves [12].

In this short paper, the simple approximate dispersion for-

mulas are derived for a microstrip line on an anisotropic sub-

strate. As an example, the numericaf results of a case of sapphire

substrate have been compared with the other available theoretical

results [4], [5] and experimental data [3].

II. APPROXIMATE DISPERSION FORMULA

Consider the microstrip line of width w on an anisotropic

substrate of thickness h whose permittivity tensor (in two-dimen-

sionaf space) is presented by

(1)

where c~ denotes the relative dielectric constant in the direction

of the &.xis, c: denotes the relative dielectric constant in the

direction of the’ q-axis, and ~. is the permittivity of free-space.

The structure is shown in Fig. 1. The f – q coordinates are

identical to the principal axes of this substrate and can be

obtained by rotating the x – y coordinates with the angle y. In

designing such a line, the characteristic impedance Z and the

phase velocity v (wave length A, propagation constant /3) must be

obtained. Let us express the effective dielectric constant at a

frequency f by c&,. These values above can be obtained as

follows [7], [8], [12] :

(2)

(3)
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